Magnetic fields (MF) of 50 Hz at 1.2 microT as well as 100 microT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells

Riferimento: 
Carcinogenesis. 2001 Jul;22(7):1043-8.
Autori: 
Ishido M, Nitta H, Kabuto M.
Anno: 
2001
Azione: 
MF may cause uncoupling of signal transduction from melatonin receptors to adenylyl cyclase.
Target: 
Magnetic fields/cAMP

Abstract

Free Article

Abstract

Magnetic fields (MF) of 60 Hz at 1.2 microT were previously shown to inhibit the antiproliferative effect of melatonin on MCF-7 cells (Liburdy,R.P., 1993, J. Pimeal Res. 14, 89-97). In addition, three laboratories (Blackman,C.F. and Benane,S.G., 1998; Luben,R.A. and Morgan,A.P., 1998; Morris,J.E., Chrisler,W.B., Miller,D.L., Sasser,L.B. and Anderson,L.E., 1998; 20th Annual Meeting of the Bioelectromagnetics Society, At. Pete Beach, FL) independently reported results consistent with this finding. In this study, we investigated the molecular basis of the biological effects of MF using MCF-7 cells. Only 1a melatonin receptors were identified by the [125I]melatonin binding assay and RT-PCR analysis. Moreover, preceding exposures to MF of 100 microT for 3, 5 and 7 days blocked the melatonin-induced inhibition of cAMP accumulation in a time-dependent manner, while none of the melatonin receptor functions or GTPase and adenylyl cyclase activities were affected. Estrogen-evoked cell proliferation was not altered by MF either. Exposure to 1.2 microT MF exerted the same effects on the melatonin-signaling pathway as that to 100 microT. Thus, this is the first study to provide evidence that MF may cause uncoupling of signal transduction from melatonin receptors to adenylyl cyclase.

Sostanze: