Modulation of intracellular calcium and calmodulin by melatonin in MCF-7 human breast cancer cells

Riferimento: 
J Pineal Res. 2002 Mar;32(2):112-9.
Autori: 
Dai J, Inscho EW, Yuan L, Hill SM.
Fonte: 
Department of Structural and Cellular Biology, Tulane University Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Anno: 
2002
Azione: 
Melatonin (10(-7) M) effects on the Ca2+/CaM path-way play a role in the growth-inhibitory on MCF-7 human breast cancer cells.
Target: 
(Ca2+)/calmodulin (CaM)

Abstract

Abstract

The pineal hormone, melatonin, has been shown to inhibit the proliferation of the estrogen receptor alpha (ERalpha)-positive macrophage chemotactic factor (MCF)-7 human breast cancer cells. Previous studies from other systems indicate that melatonin modulates the calcium (Ca2+)/calmodulin (CaM) signaling pathway either by changing intracellular calcium concentration ([Ca2+]i) via activation of its G-protein coupled membrane receptors, or through a direct interaction with CaM. In this study, although melatonin alone had no effect on basal [Ca2+]i in MCF-7 cells, it significantly enhanced the elevation of [Ca2+]i induction by extracellular adenosine triphosphate (ATP), which increases [Ca2+]i via the G protein-coupled P2y-purinoceptor and the phospholipase C (PLC) pathway. Pretreatment of MCF-7 cells with 10(-7) M melatonin increased the 10(-5) M ATP-induced [Ca2+]i peak change from 79.4 +/- 11.6 nM to 146.2 +/- 22.3 nM. Furthermore, without changing total cellular CaM levels, melatonin markedly increased the amount of membrane-bound CaM to 237 and 162% of control levels after I and 6 hr of treatment, respectively. Cytosolic CaM levels were also elevated to 172% of control after 6 hr of melatonin treatment. Correlative growth studies demonstrated that ATP (10(-5) M) can stimulate MCF-7 cell growth, that melatonin can suppress MCF-7 cell proliferation, but that pretreatment of MCF-7 cells with melatonin followed by ATP(10(-5) M), like 10(-4) M ATP can further suppress MCF-7 cell proliferation; this indicates that melatonin's potentiation of ATP induced [Ca2+]i may be above the threshold for cell growth. Given the important role of [Ca2+]i and CaM in tumor cell homeostasis and proliferation and melatonin's modulation of [Ca2+]i, melatonin's effects on the Ca2+/CaM signaling pathway may play an important role in mediating the growth-inhibitory effect of melatonin on MCF-7 human breast cancer cells.

Sostanze: