All-trans retinoic acid inhibits KIT activity and induces apoptosis in gastrointestinal stromal tumor GIST-T1 cell line by affecting on the expression of survivin and Bax protein

Riferimento: 
J Exp Clin Cancer Res. 2010 Dec 16;29:165.
Autori: 
Hoang TC, Bui TK, Taguchi T, Watanabe T, Sato Y.
Fonte: 
J Exp Clin Cancer Res. 2010 Dec 16;29:165.
Anno: 
2010
Azione: 
ATRA influenza la proliferazione delle cellule di GIST-T1e GIST-882 della linea cellulare gastrointestinale attraverso l'inibizione della crescita cellulare e inducendo apoptosi in modo dose dipendente.
Target: 
ATRA/neoplasia gastrointestinale.

BACKGROUND:

Imatinib, a selective tyrosine kinase inhibitor, has been used as a standard first-line therapy for irresectable and metastasized gastrointestinal stromal tumor (GIST) patients. Unfortunately, most patients responding to imatinib will eventually exhibit imatinib-resistance, the cause of which is not fully understood. The serious clinical problem of imatinib-resistance demands alternative therapeutic strategy. This study was conducted to investigate the effect of all-trans retinoic acid (ATRA) on GIST cell lines.

METHODS:

Cell proliferation was determined by trypan blue dye exclusion test. Western blot analysis was performed to test the expression of activated KIT, its downstream proteins, and apoptosis associated proteins. The cytotoxic interactions of imatinib with ATRA were evaluated using the isobologram of Steel and Peckham.

RESULTS AND CONCLUSION:

In this work, for the first time we have demonstrated that ATRA affected on cell proliferation of GIST-T1 and GIST-882 cell line through inhibition of cell growth in a dose dependent manner and induced apoptosis. High dose of ATRA induced morphologic change in GIST-T1 cells, rounded-up cells, and activated the caspase-3 protein. In further examination, we found that the ATRA-induced apoptosis in GIST-T1 cells was accompanied by the down-regulated expression of survivin and up-regulated expression of Bax protein. Moreover, ATRA suppressed the activity of KIT protein in GIST-T1 cells and its downstream signal, AKT activity, but not MAPK activity. We also have demonstrated that combination of ATRA with imatinib showed additive effect by isobologram, suggesting that the combination of ATRA and imatinib may be a novel potential therapeutic option for GIST treatment. Furthermore, the scracht assay result suggested that ATRA was a potential reagent to prevent the invasion or metastasis of GIST cells.

Sostanze: